THE FLUORINATION OF URANIUM AND VANADIUM OXIDES WITH SOME METAL FLUORIDES

8. LENG and J. H. MOSS

Chemistry Department, Teesside Polytechnic, Borough Road, Middlesbrough, Cleveland, TSl 3BA (Great Britain)

SUMMARY

UO₃ reacts with CrF₃ or CuF₂ forming UO₂F₂ and Cr₂O₃ or CuO respect**ively.** Further fluorination occurs above 800[°]C to form UF₆ though the presence of excess CrF₃ gives mainly UF₄. The fluorination of U₂O₉ with CrF₃ gave UO₂F₂, UF₄ and $\rm Cr_2O_3$ but with $\rm Cut_2$ gave $\rm UO_2F_2$, $\rm CuO$ and $\rm Cu_2O$. $\rm~VO_2$ reacts with excess $\rm Cr_3$ forming VF₃, VF₅ and Cr₂O₃. If there is a deficiency of CrF₃ the products are VOF₃, V_3 ^O₂ and Cr₂^O₃. CuF₂ and VO₂ form VOF₃, CuO and Cu₂C

INTRODUCTION

The fluorination of uranium oxides by metal fluorides has not been investigated. The pyrolysis of UOF_A at 250-500[°]C [I] producing UF_A and UO₂F₂ is an oxygen fluorine exchange reaction. The pyrolysis of $UO₂F₂$ at 700-950[°]C $\boxed{2}$ producing UF_{6} , U_3O_8 and O_2 and the oxidation of UF_A by oxygen at 800[°]C [3] producing UO₂r₂ and Ur, can be regarded as partly oxygen fluorine exchange reactions. The $\frac{1}{2}$ only fluorination of vanadium oxides by metal fluorides recorded is that of V₂O₅ with CrF_3 above 570[°]C producing VOF₃ and CrF₃ [4]. The oxidation of VF₃ with oxygen to VOF₂ is also noteworthy $\begin{bmatrix} 5 \end{bmatrix}$.

Two metal fluorides were used for the study OF the fluorination of uranium and vanadium oxides. These were CrF₃, chosen as an example of an oxygen fluorine **exchange reagent not possessing significant oxidising power, and CuF 2' chosen to show the effect cf mild oxidising power on the oxygen fluorine exchange reactions. Most other fluorides had either less favourable oxygen fluorine exchange free energies or were less suitable for studies by thermal analysis.**

EXPERIMENTAL

Reagents were purchased commercially (CrF₃) or prepared by previously reported methods CuF₂ [6], UO₂F₂ [7], UF₄ [7], UO₃ [7], U₃O₈ [7], UO_2 $[7]$, V_2O_5 $[8]$ and VO_2 $[9]$

Thermal analyses (Table 1) were carried out on a Stanton TRl thermobolance. Millimole quantities of uranium or vanadium oxides were well mixed with the appropriate mole ratio of metal fluoride and placed in a 5 cm 3 platinum crucible on the thermobalance. A heating rate of 270°C hr-' and a dry nitrogen atmosphere with a gas flow rate of 400 cm min⁻¹ were used except where otherwise stated. Different **thermal analyses (Table 1) were recorded on a Netzsch 404 instrument. 0.3 cm 3 platinum crucibles were used in a dry nitrogen atmosphere with a heating rate of 10°C** min^{-1} . A sample of A1 2O_3 dried at 1000 °C was used as the reference standard. X-ra **diffraction traces were recorded on a Siemens Type-F diffractometer using copper K**radiation. Hygroscopic materials were handled in a dry box over P₂O₅.

To ascertain the volatile vanadium compounds produced, a second sample of the reaction mixture was heated in a Lawrence Smith platinum crucible of length 90 mm and internal diameter 21 mm. The evolved gases were passed via PTFE connectors to a **PTFE cold trap. Excess water was added to the frozen mixture and allowed to react** with the vanadium fluorides on warming. The resulting solution was analysed for **vanadium and fluorine.**

Analyses were made by previously recorded methods; total uranium and uranium(IV) [IO] , vanadium [II] , copper [IZ] and fluorine [I3]

RESULTS AND DISCUSSION

Reactions of uranium containing compounds are recorded in Table 1

UO₂ reacted with CrF₃ at 350-400^oC to form mainly UO₂F₂ and Cr₂O₃ **(R. 12) according to the equation.**

 $3 \text{ UO}_3 + 2 \text{CrF}_3 = 3 \text{ UO}_2\text{F}_2 + \text{Cr}_2\text{O}_3$ $\Delta H = -221 \text{ kJ mol}^{-1}$ $[14] \dots 1$ though this was the sole reaction only in the presence of excess inert diluent such as UO₂F₂. If pure UO₃ was reacted with CrF₃ the known endothermic decomposition of \overline{UO}_{3} to $U_{3}O_{8}$ also occurred $\left[15\right]$ **6 UO₃** = $2 \cup_{3}$ O₈ + O₂ A H = 234 kJ mol⁻¹ [14] ...2

and o complicated two stoged reaction was observed in differential thermal analysis.

TABLE 1

167

Table 1 - continued **Table 1 - continued**

Table 1

a D double peak ex exothermic peak end endothermic peak r peak reversible on cooling

b The gases evolved were inferred by analysis of the solid residues

- **' Weight loss in CrF₃ uranium oxide mixtures commenced at 780°C. The temperatur was held steady on reaching 950°C for 2-3 hours to complete the reaction.**
- ^d A 2:1 mixture of CrF₂:UO₂ was taken in the bottom of the crucible. A further 8 parts of CrF₃ were placed above the reacting mixture so that any UF₆ formed had to **sublime through it.**

e Reactions in the CuF_o uranium oxide mixtures commenced at 780°C. The temperature was held steady at 890°C tor 2–4 hours to complete the reactio**r**

f A dry oxygen atmosphere was used in this experiment

Attempts to stop this reaction at the intermediate stage showed incomplete reaction and no other reaction products. The low temperature of the CrF₃ reaction with UO₃ is noteworthy for CrF₃ - oxide reactions $\begin{bmatrix} 4 \end{bmatrix}$ ond is perhaps associated with the **U03 decomposition occurring about this temperature.**

UO₃ reacted exothermally with CuF₂ at 210-260⁰ to form UO₂F₂ and CuO **(R. 1.13) according to the equation**

$$
CuF_2 + UO_3 = UO_2F_2 + CuO
$$
 $\Delta H = -59 \text{ kJ mol}^{-1}$ [14] ... 3

though some unreacted U03 was observed among the products.

As the CuF₂ used contained small quantities of water a catalytic fluorination **mechanism according to the known reactions -**

$$
CuF2 + H2O = CuO + 2HF
$$
 [17] ...4

and

$$
UO_3 + 2HF = UO_2F_2 + H_2O
$$
 [18] ...5

is o possible explanation of the observations. The endothermic reaction observed at 350-400^oC (R.1.14) was the decomposition of any unreacted UO₃ to U₃O₈ and O₂.

U₃O₀ required a considerably higher temperature for fluorination than UO₃, reacting at 600-700^oC with both CrF₃ and CuF₂ without weight loss (R. 1.9). The exothermic reaction with Crf_3 converted the uranium (VI) to U O_2 r $_2$ and the uranium (IV) to UF₄, Cr₂O₃ being the other product according to the equation

$$
3 U3O8 + 8 CrF3 = 4 Cr2O3 + 3UF4 + 6UO2F2 \Delta H = -594 kJ mol-1 [14] . .6
$$

The endothermic reaction of U_3O_8 with Cu_7 was more complex, Cu_2O_r UF₄ and UO₂F₂ being identified among the products (R.1.14). The stoicheiometry of the reaction would suggest a Cu(II) U(VI) mixed oxide as the cause of the unidentified **X-ray diffraction lines. The same products were observed from a similar temperoture** reaction if UO₂ was substituted for U₃O₈ in the CuF₂ reaction (R.1.19). CuO also reacted with UF₄ over the same temperature range to give Cu₂O, CuF₂ and UO₂F₂ **(R. 1.20) only according to the equation**

3 CuO +
$$
UF_4 = CuF_2 + Cu_2O + UO_2F_2
$$
 $\Delta H = -9 \text{ kJ mol}^{-1} [14] ...7$

In all these cases there were endothermic peaks in the differential thermal analysis associated with melt formation at 680°C. Pure CuF₂ has M.P. 785°C [19]. The formation of Cu₂O in these reaction products cannot have been due to oxygen loss **from CuO as in no case was any weight loss observed. The simple oxide-fluoride metathetical reaction without valency change**

$$
2\text{ CuF}_2 + \text{ UO}_2 = \text{UF}_4 + 2\text{CuO} \qquad \text{AH} = -53 \text{ kJ mol}^{-1} \quad [14] \qquad \dots 8
$$

is probably favourable thermodynamically. Thus the presence of UO₂F₂ and Cu₂O among the reaction products of CuF₂ fluorination of U₃O₈ and UO₂ could be accounted for by the initial formation of CuO and UF_A followed by their further reaction according **to equation 7.** The absence of a similar redox reactions with CrF₃ and U₃O₈ was **probably due to the much more positive free energy needed to remove a mole of oxygen** from Cr_2O_3 than from CuO at the same temperature $[14]$.

Heating of mixtures of UO₃ with CrF₃ (R. 1.2) or CuF₂ (R. 1.13) to 700[°]C gave expected products, though in the case of CuF₂ with UO₃ only UO₂F₂ and a little Cu₂O were observed.

Heating either CuF₂ or CrF₃ with UO₃, U₃O₈ or UO₂F₂ above 850[°]Cresulted **in a substantial volatilisation of uranium. Attempts to analyse the volatile uranium compounds by the procedure described in the experimental section were unsuccessful. However U and F analyses on the involatile residues left after the reaction indicated** that the material volatilised had a composition close to UF₆. As UF₆ is the only **uranium-oxygen-fluorine compound known to be readily volatile without decomposition** at the reaction temperatures [20], the volatilisation of UF₆ is assumed.

CuF₂ reacted with UO₂F₂ above 850^oC in an endothermic reaction (R.1.15-**1.17).** Residue analysis indicated volatilisation of UF₆, CuF₂ and some oxygen, while

the only involatile reaction products were Cu₂O and Cu. Up to 98% of the uranium **present could be volatilised. If an oxygen atmosphere was (R. 1.18) used the** volatilisation of UF_A but not the CuF₂ was markedly suppressed. The use of a large **excess of CuF 2 had a small suppressing effect onUF 6 volatilisation. Heating of UO 3 mixtures with Cu_{F2} above 850[°]C gave the same reaction products (R. 1.11 - 1.13)**

The volatilisation of some CuF₂ at these reaction temperatures $[19]$ is **expected under thermal analysis. The endothermic uranium volatilisation may be** explained if simple reactions of CuF₂ with UO₂F₂ are postulated forming UF₆, O₂ and **Cu20 or Cu according to the equations**

$$
4CuF2 + 2UO2F2 = 2UF6 + 2Cu2O + O2 \qquad \text{A H} = 870 \text{ kJ mol}^{-1} \quad [14] \quad ... \quad
$$

2CuF2 + U02F2 = UF6 + 2Cu + O2 A Hz602 kJ mol -1 143 . . . 10

The effect of high partial oxygen pressures in suppressing UF₆ volatilisation **may be explained it it is assumed the above reactions are reversible. The direct** $\frac{1}{4}$ reaction of UO₃ with CuF₂ might be expected to have given rise to some UF₄ vic **production of U₂O_o (equation 2) and its subsequent reaction with further CuF₂. The** absence of UF₄ is probably explained by the known oxidation reaction at 800⁰C 3.

$$
2UF_4 + O_2 = UO_2F_2 + UF_6 \qquad \qquad \dots \qquad \dots
$$

The less positive free energies required to release oxygen from Cu₂O above **850°C as compared with 600-700°C [14] probably explain the formation of Cu and** the absence of UF₄ as products in the high temperature reaction only.

$$
2Cu_{2}O + UF_{4} = UO_{2}F_{2} + CuF_{2} + 2Cu \qquad \Delta H = +25 \text{ kJ mol}^{-1} \quad 14 \qquad \dots \quad 12
$$

Reaction of CrF₃ with uranium oxides and UO₂F₂ was only studied under an **inert atmosphere as under oxygen chromium volatilisation was observed [21].** Reaction of CrF₃ with UO₃ above 850° C was endothermic and gave Cr₃O₃ and CrUO₄ as the **involatile products from a 1:1 mole ratio mixture (R.1.1) but with CrF₃:UO₃ mole** ratios of 2:1 or greater UF₄ and Cr₂O₃ were obtained as the involatile products (R.1.2, **1.4).** Evidence of a liquid phase above 900[°]C was obtained. UF_A melts at 1034[°]C **[223 , and an early value for the melting point was 960°C [7]** . **Analysis indicated** that UF₆ and O₂ were the only materials volatilised. For a CrF₃:UO₃ mole ratio of **I:1 all the fluorine was volatised (R. 1. l), for 2:l mole ratio 80% of the uranium wos volatilired (R. 1.2) but for increasing mole ratios the uranium volatilisation decreased**

until it fell below 8% for a mole ratio of 15:1 (R. 1.3-1.7). Differential thermal **analysis indicated reaction below 900°C before much uranium had volatilised, the reaction temperature being lowered by increasing excess of CrF₃ (R. 1.2-1.5).** The **excess CrF 3 had to be present in the reaction mixture as if placed on top of the reaction mixture the UF₆ volatilisation was not suppressed (R. 1.8).** Similar high temperature reactions were observed for mixtures of CrF_3 with U_3O_8 and UO_2F_2 (R. 1.9, 1.10).

Once source of UF₆ could have been the pyrolysis of UO₂F₂ according to the **known reaction [2]**

9 UO₂F₂ = 2 U₃O₈ + 3UF₆ + O₂ $\Delta H = +1464$ kJ mol⁻¹ [14] ... 13 followed by the fluorination reaction for U_3O_8 (equation 6). This would have given a **maximum yield of 60% UF 6 in the equation**

16CrF3 + 1 **5U02F2 = 9UF6 + 6UF4 + 8Cr203 + 302 . . . 14**

As, however, yields of up to 80% UF₆ were observed, equation 11 cannot be the sole mechanism of UF₆ production and direct fluorination of UO₂F₂ by CrF₃ is **needed according to the equation.**

$$
4CrF_3 + 3UO_2F_2 = 2Cr_2O_3 + 3UF_6 \qquad \qquad \dots 15
$$

The production of CrUO_A $[23]$ in the absence of excess CrF₃ could be explained by combination of Cr₂O₃ with U₃O₈ formed from UO₂F₂ pyrolysis.

$$
6 Cr_2O_3 + 4 U_3O_8 = 12 CrUO_4 + O_2
$$
 ... 16

The suppression of UF₆ volatilisation by excess CrF₃ according to the equation

$$
6 \text{ UO}_{2}F_{2} + 4 \text{CrF}_{3} = 6 \text{UF}_{4} + 2 \text{Cr}_{2} \text{O}_{3} + 3 \text{O}_{2} \qquad \qquad \dots \text{ 17}
$$

is less easy to explain. It cannot be due to the thermodynamically plausible reactions:

$$
6UF_{6} + 2Cr_{2}O_{3} = 6UF_{4} + 4CrF_{3} + 3O_{2} \qquad \Delta H = -736 \text{ kJ mol}^{-1} \quad [14] \dots 18
$$

6UF_{6} + U_{6}O_{6} = 9UF_{4} + 4O_{6} \qquad \Delta H = -657 \text{ kJ mol}^{-1} \quad [14] \qquad \dots 19

and

$$
6UF_6 + U_3O_8 = 9UF_4 + 4O_2
$$
 $\Delta H = -657 \text{ kJ mol}^{-1}$ [14] ... 19

as CrF₃ is not involved as a reactant in these equations. The possible reactio

$$
UF_6 + 2CrF_3 = UF_4 + 2CrF_4
$$
 ... 20

is eliminated as placing the excess $\mathrm{Cr}_{3}^{\mathrm{F}}$ above the reacting mixture did not suppress the UF₆ volatilisation (R. 1.8). The suppression of the UF₆ volatilisation by the presence of **excess CrF 3 is presumably due to a different Ireaction occurring in the presence OF excess** CrF₃ as indicated by the lowering of the reaction temperature under differential thermal **analysis.**

Reactions of vanadium containing compounds are recorded in Table 2. CrF₃ reacted with VO₂ above 5/0°C in a single stage reaction. The involatile product were $\rm Cr_2O_3$ and either VF₃ if excess $\rm Crr_3$ was used or $\rm V_3O_5$ if excess VO₂ was used. **All the vanadium volatilised was in the oxidation state (V) and the fluorine to vanadium** ratio varied from 3.05;1 to 4.85;1. As VOF₃ $[24]$ and VF₅ $[25]$ are the only vanadium **(V) oxygen-fluorine compounds known to be volatile without decomposition under the reaction conditions, evolution of these two gases in a mixture is assumed. The volatile** products were largely VF₅ if excess CrF₃ was used (R.2.1) or only VOF₃ if excess VO₂ was used (R.2.3). By using a reaction mixture containing CrF₃:VO₂ in a 4:9 ratio it **was possible to obtain a mixture of VOF₃ and VF₅ as volatile products but only V₃O₅** and Cr_2O_3 in the solid residues $(R, 2.2)$.

Only impure $\vee F_3$ was available for study but this reacted with $\vee O_2$ above 590°C to produce VOF_3 and V_3O_5 (R.2.4) the probably equation being

$$
VF_3 + 3VO_2 = V_3O_5 + VOF_3
$$
 ... 21

The products of the reaction of VO₂ with excess CrF₃ can be regarded as those **from a simple oxide fluoride methathetical reaction followed by a disproportionation. The metathetical reaction**

$$
4CrF_3 + 3VO_2 = 3VF_4 + 2Cr_2O_3 \qquad \qquad \dots 22
$$

is analogous to the previously studied reaction of Cr_{3} with TiO₂ $\bm{\mathrm{Id}}$ and would be estimated to go at 540^oC at 1/1000th atmosphere pressure [14] assuming that the unknown sublimation energy of $\forall F_A$ is similar to that of TiF_A. If $\forall F_A$ is produced at elevated temperatures it is known [26] to disproportionate according to the equation

$$
2\sqrt{r}_4 = \sqrt{r}_3 + \sqrt{r}_5 \tag{23}
$$

so the overall observed reaction

$$
8CrF_3 + 6VO_2 = 4Cr_2O_3 + 3VF_3 + 3VF_5
$$
 ... 24

may be accounted for.

An alternative sequence of reactions

$$
4\vee O_2 = V_2O_3 + V_2O_5 \qquad \qquad \dots \quad 25
$$

$$
V_2O_3 + 2CrF_3 = 2VF_3 + Cr_2O_3
$$
 ... 26

$$
3V_2O_5 + 10CrF_3 = 6VF_5 + 5Cr_2O_3 \qquad \qquad \dots 27
$$

TABLE 2

d Novel X-ray diffraction lines were observed. If these were due to a single material a composition of the form Cu₃VO₄ x CuF₂

is not acceptable as the fluorination of V_2O_5 by CrF₃ only proceeds as far as VOF₃ [4] .

The production of VOF₃ as well as VF₅ and the absence of VF₃ in the solid **residues from the reaction of CrF 3 with VO 2 in o 4:9 ratio, is plausible as there is evidence for the reaction of VF 3 wih VO 2 according to the equation:**

$$
VF_3 + 3VO_2 = VOF_3 + V_3O_5 \qquad \qquad \dots 21
$$

The absence of any VF 5 from the volatile products from the reaction of excess VO₂ with CrF₃ suggests a different reaction sequence in this case, in which presumabl **oxidation to vanadium (V) occurs before fluorination has reached the VF 4 composition.** The evidence for the existence of VOF_2 [27] in this connection is noteworthy.

CuF2 reacted with VO 2 above 350°C in a sharply differentiated two-stage reaction, the first reaction being complete by 470°C and the second reaction starting at 550°C (R.2.5–2.7). The vanadium was volatilised as VOF₃ only, complete volat**i** lisation of the vanadium being achieved if the initial Cut_2 :VO $_2$ ratio was greate than 3.2. The final involatile reaction products were CuO and Cu₂O only. These **results indicate that CuF 2 and VO 2 react according to the overall equation -**

$$
3CuF_2 + 2VO_2 = CuO + Cu_2O + 2VOF_3
$$
 ... 28

the oxidising agent producing the vanadium (V) being the CuF₂ rather than the disproportionation of the vanadium (IV) as was observed in the CrF₃ reactions.

X-roy powder diffraction of the reaction products after the first reaction gave only unassignable lines apart from excess unreacted CuF₂. As the mass loss to the end **of the first stage was two-thirds the total moss loss, a reaction equation of the form**

$$
(3+x) \text{CuF}_2 + 3 \text{VO}_2 = \text{Cu}_3 \text{VO}_4. \text{xCuF}_2 + 2 \text{VOF}_3 \tag{29}
$$

is likely. $Cu_3\vee O_4$ is a known compound [28] so the material prepared was either a new polymorph of Cu_3VO_A or it contained CuF_2 as well in the crystal.

ACKNOWLEDGEMENT

One of us (B. L.) thanks Teesside County Borough Council for a maintenance award.

REFERENCES

- **1 P. W. Wilson, J Inorg. and Nucl. Chem., 36 (1974) 363.**
- **2 L. M. Ferris and F. G. Baird, J Electrochem. Sot., 107 (1960) 305.**
- **3 L. M. Ferris, Ind. Eng. Chem., 51 (1959) 200.**
- 176
- 4 **N. C. Cabeldu, B. Leng and J. H. Moss, J Fluorine Chem., 6 (1975) 357**
- **0. Ruff and H. Lickfett, Chem. Ber., 44 (1911) 2539.** 5
- **C. Poulenc, Ann. Chim. Phys., 2 (1894) 58** 6
- $\overline{7}$ **J. J. Katz and G. T. Seaborg, The Actinide Elements, Wiley, New York 1957 Chapter 5.**
- **8 S. Y. Tyree Ed., inorganic Syntheses Vol. IX, McGraw-Hill, New York, 1967 p 8.**
- **9 N. V. Sidgwick, The Chemical Elements and their Compounds, Oxford University Press, Oxford, 1950 p 819**
- **10 C. L. Wilson and D. W. Wilson, Comprehensive Analytical Chemistry, Elsevier, Amsterdam, Volume 1 c 1961, p 605.**
- **11 ibid, p 544**
- **12 ibid, p 371**
- **13 J. D. Rushmere and H. Mason, UKAEA (Industrial Group) Report SCS-R-392, 1959.**
- **14 0. Kubaschewski, E. L. Evans and C. B. Alcock, Metallurgical Thermochemistry 4th Ed., Pergamon Press, Oxford 1967**
- **15 V. G. Vlasov and A. G. Lebedev, Zhur. Priklad. Khim., 34 (1961) 1739.**
- **16 B. Leng and J. H. Moss, J Fluorine Chem., 5 (1975) 93.**
- **17 C. M. Wheeler and H. M. Haendler, J Amer. Chem Sot. 76 (1954) 263.**
- **18 C. W. Kuhlmann, U.S. At. Energy Comm. MCW-144, 1948**
- **19 R. A. Kent, J. D. McDonald and J. L. Margrave, J Phys. Chem., 70 (1966) 874**
- **20 D. Brown, Halides of the Lanthanides and Actinides, Wiley-Interscience, London 1968 p 21**
- **21 B. Leng, PhD. Thesis, Teesside Polytechnic 1971**
- **22 S. Langer and F. F. Blankenship, J Inorg. Nucl. Chem., 14 (1960) 26**
- **23 E.** J . **Felten, E. F. Juenke and S. F. Bartram, J Inorg. Nucl. Che., 34 (1962) 839.**
- **24 R. Coulton and J. H. Canterford, Halides of the First Row Transition Metals, Wiley-Interscience, 1969 p 108**
- **25 ibid, p III**
- **26 R. G. Cavell and H. S. Clark, JChem. kc., (1962) 2692**
- **27 Yu. A. Buslaev and M. P. Gustyakova, Izv. Akad. Nauk. SSSR, Ser. Khim. (1963) 1533.**
- **28 A. Deschanvres and B. Raveau, Compt. Rend. 259 (1964) 3771.**